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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 2-12- 59A

THE EFFECTS OF TARGET AND MISSILE CHARACTERISTICS ON

THEORRTICAL MINIMUM MISS DISTANCE FOR A BEAM-RIDER

GUIDANCE SYSTEM IN THE PRESENCE OF NOISE*

By Elwood C. Stewart, Frank Druding,

and Togo Nishiura

SUMMARY

A study has been made to determine the relative importance of those

factors which place an inherent limitation on the minimum obtainable miss

distance for a beam-rider navigation system operating in the presence of

glint noise and target evasive maneuver. Target and missile motions are

assumed to be coplanar. The factors considered are the missile natural

frequencies and damping ratios, missile steady-state acceleration capabili-

ties, target evasive maneuver characteristics, and angular scintillation

noise characteristics.

By means of a modified orthogonal-square analysis, a simple corre-

lation equation has been derived which expresses the theoretical minimum

miss distance as a function of the above factors. It is shown that:

(1) The three most important parameters that affect minimummiss distance

are target acceleration, glint noise, and missile acceleration capability.

(2) For realistic values, the switching period of target acceleration has

negligible effect on minimum obtainable miss distance. (3) The ideal

missile dynamics are those with infinite natural frequencies and zero

damping ratios; any other dynamic factors will have a deleterious effect

on the miss distance, although for realistic dynamics the effect is small.

Examples are given utilizing the correlation equation to indicate

possibilities for improvement of existing systems, to indicate the points

of diminishing returns beyond which relatively small benefits can be

gained by improvements in missile dynamics and acceleration capability,

and to evaluate the effects of altitude and Mach number on optimum system

performance.

*Supersedes NACA Research Memorandum A57F26 by Elwood C. Stewart,

Frank Druding, and Togo Nishiura, 1958.



INTRODUCTION

The noise signals which occur in a missile guidance system can impose
a serious limitation on the effectiveness of the system. This is because
the noise signals are often indistinguishable from the true target signal.
Consequently, the missile responds to these unwanted signals and the miss
distance is thereby increased. By careful design most sources of noise
can be largely reduced or eliminated. An exception to this is glint noise
which has its physical origin at the target and cannot be eliminated in
systems utilizing radar detection. The guidance system should therefore
be designed to minimize the errors resulting from this particular source
of noise. Since the noise is random, a statistical approach is indicated;
theoretical methods of the type devised by Wienel are especially
appropriate.

In reference i, the application of Wiener fZlter theory to minimize
the effects of glint noise in a beam-rider guidance system was considered.
The study established both the optimum system characteristics and the
miss distances which would result if such a system could be built. How-
ever, the required acceleration capabilities of the missile were larger
than available in practice; hence the indicated minimummiss distances
were not physically attainable. The effect on t_e minimummiss distance
of placing a restriction on missile maneuverabil_ty was considered in a
subsequent study (ref. 2) by meansof Newton's modification of the Wiener
filter theory (ref. 3). This study showedthat for the case considered,
filtering could be chosen to place the desired restriction on missile
maneuverability with little accompanyingincrease in minimumobtainable
miss distance. Thus a practical approach to the design of the beam-rider
guidance system was demonstrated.

The previous study showedthat there are several factors which place
an inherent limitation on the minimumobtainable miss distance. The
factors were shownto be the maneuvering capabilities of the target and
missile, the glint noisej and the missile dynamic characteristics. In
reference 2 equations were developed which related these factors to the
miss distance, but the equations are complicated and have not been solved
in explicit terms. For this reason the theory c_n only be used to evaluate
numerically the optimum performance for specific cases. It is clear that
this lack of an explicit solution makes it difficult to draw general con-
clusions as to the effects of the above factors. The purpose of the
present report will be to determine a simple approximate relationship
between minimummiss distance and the factors which determine this minimum
value, and to use the result to assess the relative effects of each factor.
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SYMBOLS

maximum steady-state acceleration capability of the missile

perpendicular to the beam, g's

target acceleration perpendicular to the beam, g's

approximately _K-_YJ , undamped natural frequency in the

denominator of the missile transfer function, cps

_L_Ms-LsM_ I/2 _ fa undamped natural frequency in the
i

numerator of the missile transfer function, cps

optimum transfer function of the compensating network

aerodynamic transfer function of the missile

moment of inertia about the pitch axis of the missile, slug-ft 2

lift, ib

moment, ft-lb

mass of missile, slugs

noise magnitude or zero frequency spectral density, ft2/radian/sec

-LsM_ • ratio of lift developed by movable control to total lift

variable in the Laplace transform

average switching period of the target acceleration, sec

reciprocal of the aerodynamic gain, radians/ft/sec 2

time, sec

missile velocity, ft/sec

over-all optimum transfer function of the system
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Note :

( ) and ( ) respectively.

missile displacement from a referen(_e line, ft

apparent target displacement from t_me target center due to noise,
ft

target displacement from a referencc_ line, ft

angle of attack, radians

control-surface deflection, radians

error between target and missile position, yT-YM, ft

(L_/mV) - (M@+M_)/Iy, damping ratio of the denominator of the

4_f a

missile aerodynamic transfer function

M +Ma

4_fbIY , damping ratio of the numerator of missile aerodynamic

transfer function

angle of pitch, radians

spectral density of noise dlsplacement YN, ft2/radian/sec

spectral density of target displacement YT, ft2/radian/sec

angular frequency 3 radians/sec

First and second derivaties with respect to time are indicated by

8L 8M

The symbols L_, M_ represent _3 _, etc.

Subscripts

a

b

denominator of missile transfer function

numerator of missile transfer function



Superscripts

+ the part of a function having poles and zeros in the upper half
plane

the part of a function having poles and zeros in the lower half
plane

GENERALCONSIDERATIONS

The problem of beam-rider guidance in the presence of glint noise
is illustrated in figure l(a) for the case wherein the target and missile
move in the sameplane. I It can be seen here that displacements are
referred to a line fixed in space. The true displacement of the target
due to evasive maneuver is indicated as YT" Superimposedon this signal
and indistinguishable from it is the glint noise, YN' indicated as a dis-
placement from the true target center. It is the sumof these two signals
that is detected by the radar, and an attempt is madethen to make the
missile position, YM' coincide with that of the true target position.
The amount by which the missile fails to follow the target, YT-YM, is
indicated by c which obviously should be minimized in somesense. The
corresponding block diagram representation of the problem is shownin
figure l(b).

The problem has been studied in references i and 2 where the inputs
YT and YM were treated as statistical quantities. Since use will be made
of the previous results, it will be necessary to review and summarizethis
work briefly. For more detail than given here the reader is referred to
these works.

From the previous work it was found that in the realistic optimization
problem it is necessary to consider the effects of limiting. In particu-
lar, limiting of the control-surface deflection was found to be the criti-
cal factor. In reference 2, this problem was considered and an approach
was used wherein the system was optimized so as to minimize the miss
distance with a restriction on the available control motion. The
restriction is imposed so that the probability of the control surfaces
hitting physical stops is small and, hence, the system operates essentially
as a linear one.

iAlthough the head-on approach is shownin figure l(a), the results
presented herein include coplanar attacks for all aspects when it is
assumedthat the beamdoes not rotate in space. This condition is achieved
when the launcher is flying a collision course and very nearly achieved
when the launcher is sufficiently far from the target.
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The essentials of the problem are illustrated by figure 2 where Hf

represents the transfer function of the given aerodynamics, 5 is the

control deflection at the input to Hf, and Hco represents the transfer

function of the compensating network which i_ to be determined. This

network is chosen so as to minimize the rms _ss distance, _-2, with a

restriction on the rms control deflection,_. As previously indicated,

the solution to the problem depends only on the characteristics of the

noise, target maneuver, and the missile aerodynamic transfer function.

The following representations of these factors were used:

I. The noise was represented by a flat spectral density of magnitude

N, rather than by an actual spectrum, since it was shown in reference i

that this assumption reduces the mathematical complexity and produces

essentially the same result.

2. The target acceleration, aT, was defined as the component of

acceleration perpendicular to the beam. The target maneuver was then

represented by an alternate switching of this acceleration in opposite

directions with random duration. The spectral density of target displace-

ment corresponding to this type of maneuver was defined (as in ref. 2) by

kaT_
@T =

_w4(u_?-,k2)

where k/2 is the average switching rate of -_arget acceleration. For the

present study it is convenient to use the avq_rage switching period T= 2/k.

3. The missile aerodynamic transfer f_ction from control deflection

to displacement (without feedback) was assumed to be of the following form:

Hf(s) -
1   s2+2 b! bS+l

Ts2 s2(Ta2S2+2_Tas+l)

Again, for the present study it is more conv, mlent to consider the natural

frequencies, fa and fb, defined by fa = 1/2:_Ta and fb = i/2_1_o.

If the magnitudes of these factors are ]mown the optimum solution

can be obtained from the following series of equations:

(a) The optimum compensating network, Hco:



where

Hco(i_,p ) -
1 Fe-i_ _¢T(_) ei_t ]

(1)

Here Hf(im) is the complex conjugate of Hf(i_) and P

multiplier.

(b) The called-for mean-square control deflection:

is the Lagrangian

oo

--00

(2)

(c) The optimum over-all transfer function, Yo:

Yo(i_) = Hco(i_)Hf(iw) (3)

(d) The minimum mean-square miss distance, ea :

oo - +

--00 _00

(4)

These equations comprise the solution, but they have not been solved

explicitly forminimummiss distance as a function of the variables

involved. An iterative numerical solution has been used in which the

value of p is varied until the resultant Hco from equation (1) gives

the desired value of 52 from equation (2).

The difficulty in obtaining an explicit solution greatly hampers a

fuller understanding of the filter problem. There are a great many

important questions which are difficult te answer, such as, "How much

missile acceleration is necessary to keep rms miss distance within a

specified limit when attacking a target of known acceleration capabili-

ties?" or "How important is it to increase the missile natural frequency?"

These and similar questions cannot readily be answered because of the lack
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of an expression for the miss distance in terms of factors which place

an inherent limitation on miss distance. The specific factors involved,

which are considered herein, are the following:

(I) Target maneuver characteristics

(a) The acceleration, aT, of the target

(b) The average switching period, T, of the target acceleration

(2) Scintillation noise characteristics; spectral density N

(B) Missile aerodynamic characteristics

(a) The missile dynamic terms, Ta and T b (or equivalently,

natural frequencies fa and fb) and the associated damping

ratios _a and _b

(b) The rms of the called-for control motion,_, or equiva-

lently the missile steady-state acceleration capabilities, 2

aM •

Because of the desirability of evaluating the effects of these factors

on the minimum obtainable miss distance, the remainder of the report will

be devoted to the development and application of one method of evaluation

and to a discussion of the results obtained by this method.

ANALYSIS

It is desired to formulate a simple functional relationship between

miss distance and the factors listed above. It is clear that by having

a sufficient number of specific solutions, it is possible to formulate

such a relationship empirically; however, the progran_aing of the required

tests deserves careful consideration. This is especially true if the

number of independent variables is large. Consider an example where n

independent variables are involved. In the traditional method a standard

(or reference) level is chosen for each of the n variables. Tests are

programmed so that in the first set only the first parameter is varied

2For the purpose of this report it will be more convenient to place

the restriction on this parameter rather than the control motion. Since

limiting of the control motion is the critical factor, the restricted

value of aM must be chosen to correspond to the desired control motion
restriction. For the control motion restricted to one half of the maximmm

available, a restriction on aM is related to a restriction on 5 by

the aerodynamic gain, i/Ts 2, by the equation aM = 2_B2.2Ts 2.
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through its desired range while the others are held at the reference level.

The same procedure is repeated for the other variables. Next, interaction

between variables must be investigated. This requires a series of tests

wherein various combinations of two, three, or more of the independent

variables are considered. Such a program obviously will very quickly

reach a practical limit. Some other method involving fewer tests and

less computational work is needed.

One such method is that of orthogonal squares. A complete description

of this method is beyond the scope of this report and the reader is

referred to references 4, 5, 6, and 7. This discussion will be limited

to a particular orthogonal square which is related to the problem at hand.

Figure 3 is a representation of the square to be considered. Each

block represents a single experiment. Since the square is 5 × 5, it pre-

scribes 25 individual experiments. Each block contains letters A, B, C,

etc., which represent the independent variables. The subscripts of these

letters denote the level of the variable. A 5 × 5 square accommodates

up to six variables and permits each variable to assume five values (i.e.,

levels). A specific range is selected for each variable on the basis of

the requirements of the problem. The range is divided into four increments

which are usually (but not necessarily) of equal, or nearly equal, size.

The values which define the boundaries of these increments will be termed

the "levels" that the variable will assume in the experiments. Figure 3

gives the arrangement for the various levels in the orthogonal square.

That the orthogonal square requires fewer experiments than the tra-

ditional method can be seen from the following considerations. The par-

ticular arrangement of variables prescribes experiments from which the

effect of any one parameter can be isolated. For example, notice that in

the first column the variable A is held fixed at the level At, while

the other variables assume each of the five assigned levels once. In the

second column A is held at A2 while the other variables range through

their five levels. The same ordering is true for the remaining columns.

The average results of each column fairly well represent the influence of

A, not for fixed standard levels of the other variables but for an average

of conditions throughout the whole range. Examination of the orthogonal

square will show that the same is true of each of the remaining variables.
Thus it is clear that the effect of each variable can be found from the

same 25 experiments. In contrast, the traditional method requires a sepa-

rate set of experiments for the effect of each variable and also for the

effects of interactions among variables.

The value of the dependent quantity is now experimentally determined

for each of the 25 combinations of variable levels prescribed by the

square. It is desired to write the dependent variable in terms of A, B,

C, D, E_ and F. To do this it is necessary to assume a form for the

functional relationship and assign unknown constant coefficients to each
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term. A least square fitting of these coefficients to the experimental
data is then performed. The procedure is repeated until a correlation
equation of acceptable form and accuracy is obtained.

In application of the method to the present missile problem, the
eight factors, fa, fb, _a, _b, aM, aT, _, and N, can be considered to be
the independent variables corresponding to A, B, C, etc. The choice of
range and level of these parameters prescribes each test. For each test
the miss distance as given by equation (4) can be considered to correspond
to the dependent variable. Thus, for a 5 x 5 orthogonal square, 25 tests
are performed, and the 25 corresponding values for the miss distance are
obtained. It is this data which must then be fitted by the least-square
curve-fitting method.

For this particular problem two conditions have been imposed on the
choice of certain of the independent variables. Oneof these, S that
aM/aT _ 4, is madesince this is the region of interest for the short
range missile; the other, that fa _ fb, arise_ from limiting the study
to positive lift-ratio missiles (canard or varlable-incidence 3 for
example), as can be deduced from the definition of these terms given in
the symbols. In order to incorporate these restrictions into the analysis
it was necessary to modify the orthogonal-square technique. The variables
aM, fa, N, T, _a, and _b were placed in the orthogonal square in the con-
ventional manner. For the remaining two varia3les, fb and aT, the
selection of the level values were modified to satisfy the above
restrictions while the ordering of these various levels in the square
remained the same.

In or&er to prescribe the orthogonal-square program it was necessary
to assign ranges to each of the independent variables under study. In
general, the ranges of the variables have been chosen sufficiently wide
to include most air-to-air target-missile intercept problems of interest.
The parameters and corresponding ranges are tabulated below:

fa,fb 0.5 to _ cps aT

_a,_b 0 to 0.5 Y

aM 4 to 20 g's N

C.5 to 3 g's

_-33 to i0 sec

7.5 to 30 ft2/radian/sec

with the additional conditions fa _ fb, aM/a_ _ 4.

sThis restriction is not so severe as it might appear, since aT is

only the coplanar component of target acceleration perpendicular to the
beam.
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The determination of the size of the orthogonal square which must
be used is ordinarily dictated by the numberof independent variables
required. To include all of the eight parameters previously discussed
in a single orthogonal square at least a 7 × 7 square would be required.
However, to obtain a better understanding of the relative importance of
the various factors the problem was divided into two phases.

The phase I square was constructed to study only the effects of
missile aerodyna__c parameters on miss distance. Accordingly, the target
parameters aT, T, and N, were held fixed at values between the extremes
listed previously. These values were aT = lg, T = 5 sec, and N =
15 ft2/radian/sec. The five missile aerodynamic parameters, fa, fb, _a,
_b, and aM, involved in this phase were placed in a 5 M 5 square
constructed as outlined previously.

The phase II square was designed to consider the combined effects of
missile and target maneuverand noise characteristics on the miss distance.
The parameters considered were the missile parameters, fa, fb, and aM, and
and the target parameters, aT, T, and N. These parameters were also
accommodatedby a 5 × 5 square.

The miss-distance values corresponding to each "test" within each
square were obtained from a digital computer on which the pertinent
equations (1) through (4) were programmed. Since in phase II the general
problem is considered, the values of the variables for each run and the
resulting miss distances are tabulated in table I for the phase II square.

MISS-DISTANCEEQUATIONS

To obtain the correlation equations which express minimummiss
distance as a function of the variables under consideration, it is neces-
sary to assumesomeform for the functional relationship. The reasoning
in choosing the functional form is largely heuristic. There are, however,
several aids which can be used. First, several computer runs were made
where only one parameter at a time was permitted to vary. This yielded
information on the form and magnitude of the effect of each variable on
miss distance. It serves only as a guide, however, because it yields no
information regarding cross-product terms. Second, the rigorous equations
were examined for indications of possible cross-product terms which might
be expected to exist if the exact equations had been solved. Third, the
orthogonal-square results were scrutinized in order to detect possible
trends. From such information a reasonable form of equation was con-
structed with unknowncoefficients. A least square fitting (ref. 8) of
the coefficients to the experimental data was then performed, followed by
a simple analysis to determine which terms were important and which could
be discarded. On the basis of the root-mean-square criterion, if the fit
of the equation so obtained was not satisfactory, new combinations
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(interaction terms) or higher powers of the _asic variables were added as

new terms. This procedure was repeated many times until correlation equa-

tions were obtained which satisfactorily represented the minimum obtainable

miss distance for both phase I and Base II. For this particular problem,

an rms deviation of a few feet was considered satisfactory.

In review, it will be remembered that in phase I only the effects of

missile aerodynamic parameters on the miss distance are considered. The

target maneuver and noise characteristics were held fixed at reasonable

mid-range values between the expected extremes as given below. In phase

II, the more general problem of the combined effects of missile aerodynamic

parameters, target maneuver, and noise characteristics are considered. The

following equations were obtained as a result of these studies:

Phase I:

_ = I0"50 + I16M13 + 3"60 (_'a , 7.12 -586 (9)

for

aT = ig, T = 5 sec, N = 15 ft2/radian/sec

Phase II:

= 9.20 + 5.02 a'-T_+ 1.34aT2 + _ _- 22
T

(6)

for

_a, _b << I

It should be pointed out that these equations can be used for any combi-

nation of numerical parameters as long as the values of all parameters

lie within the ranges selected for this study. The accuracy of the

equations in many cases rapidly deteriorates )utside these ranges. Like-

wise the forms of the equations are not valid when extended beyond the

test ranges. As for the accuracy of these eqlations, it has been found

that both equations (5) and (6) fit the origi:ml tests of the orthogonal

square with an rms deviation of 2.4 feet, and have twenty degrees of free-

dom. 4 The large number of degrees of freedom tend to insure that these

equations will also satisfactorily represent "_e results obtained from

@Degrees of freedom can be defined as the difference between the

number of data points and the number of unknown coefficients in the corre-

lation equation (refs. 8 and 9). Eight to ten degrees of freedom are

usuall_ considered necessar_ for obtainin_ a good statistical fit.
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equation (4) for any combinations of parameters which were not part of

the orthogonal-square tests but were within the prescribed ranges. Many

such combinations were tried, and the corresponding miss distances were

in accord with the rms deviation.

Equations (5) and (6) can be readily used to reach certain conclusions

as to the relative importance of the various factors which contribute to

the miss distance. The effect of these factors will be discussed in the

following sections. It should be noted that equation (5) can only be used

to evaluate the effects of missile dynamics on miss distance. Equation (6)

is, therefore, a more general and useful expression.

For purposes of later discussion in which the effects of individual

parameters are illustrated by means of perturbations, it will be convenient

at this point to introduce the term "reference level." This term willbe

used to denote a particular mid-range set of values of the independent

variables of equation (6). They are as follows:

aT = lg, T = 5 sec, N = 15 fta/radian/sec

fa = 2.05 cps, fb = 2.88 cps, aM = i0 g's

RESULTS AND DISCL_SION

Effects of Missile Parameters

The five missile l_rameters considered in this section are the aero-

dynamlcnatural frequencies, fa and fb, the aerodynamic damping ratios,

_a and _b, and the missile steady-state acceleration capability, aM. It
will be necessary to make use of both equations (5) and (6) in order to

examine more fully and understand the effects of these factors.

Consider first equation (5) rewritten in the following form:

From the existence of negative terms in this equation it may appear that

the missile's dynamic factors could be adjusted so that their net effect

would be to reduce the miss distance. However, from the definitions given

in the symbols, it can be shown that the restriction fa _fb inherently

implies that _a _ _b and, consequently, that _a/fa _ _b/fb. From

the viewpoint of achieving minimum miss distance, the ideal dynamics are

those with infinite natural frequencies and zero damping ratios; any
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other set of dynamics will have a detrimental effect on minimum miss

distance. It will be desirable to examine the quantitative effect of

these parameters on miss distance.

Consider the effects of the damping ratios on minimum miss distance.

The main point that can be made from equation (5) is that for realistic

ranges of the missile parameters, the quantitative effects of the damping

ratios are negligible. For example, the damping ratios of current missiles

rarely exceed 0.3 and are usually much smaller. Thus, equation (5) clearly

shows that the damping ratios have an effect which is small compared to

the rms miss distance. For this reason, the effects of the damping ratios

were not considered in phase II (eq. (6)) which will be discussed presently.

As for the natural frequencies, it is clear from equation (5) that

from the standpoint of achieving minimum miss d_stance, the ideal missile

would have infinitely fast acceleration response, that is, infinite natural

frequencies. In the practical case such dynami¢s can only be approached

by making the natural frequencies high. How high to make these frequencies

can be discussed more comprehensively from equation (6) wherein the target

maneuver and noise characteristics are also considered. This equation

shows, first of all, that no important interrelation between missile

dynamics and target characteristics or noise are present. It also shows

that the variations of miss distance with natural frequencies are

essentially similar to that found in equation (._), that is, miss distance

varies linearly with (1/fa-1/fb). The quantitative effect on miss distance

due to these natural frequencies is plotted in figure 4(a) as a function

of the natural frequency ratio fa/fb for sevezal values of fa- From

the definitions given in the symbols it is seen that the ratio fa/fb

can also be interpreted in terms of the missile lift ratio, R, since
fJfb = JR. It is clear from this figure that the least adverse effect

on miss distance occurs when fa = fb (which is the limit on realizable

missiles). In terms of lift ratio this means that variable-incidence con-

figurations (lift ratios approaching unity) are the most desirable. How-

ever, if fa # fb it is apparent from the figure that decreasing fa or

increasing fb will increase the miss distance. It therefore follows

that for configurations having a fixed low fa/fo ratio (i.e., low lift

ratio missiles such as the canard type), it becomes more important to

increase the natural frequency fa in order to _void increased miss

distance. It is also apparent from figure 4(a) that the maximum effect

the natural frequency can have (within the range of validity of the

equations) occurs when fa = 0.5 and fb = _. For this condition the

increase in miss distance is 12.4 feet. Further reductions in the natural

frequency fa would result in a further increas_ in miss distance although

the equations would not be quantitatively accurate. In most situations 3

however, the natural frequencies would not have this great an effect

because they would be closer than in the case just cited. For example,

for the typical missile used in reference 2 in which fa = 2.05

and fb = 2.88, the value of (1/fa-1/fb) is 0.14. The increase in miss

distance in this case is only about one foot. For this reason emphasis
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on achieving high natural frequencies is seldom warranted. The figure

presented can be used to show the point of diminishing returns, that is,

the frequency at which relatively small benefits can be gained by

increasing natural frequencies.

The missile factor which has by far the largest effect on miss

distance is the steady-state acceleration capability. Figure 4(b) illus-

trates the importance of this factor as it is varied through its range

while all other parameters are held fixed at the reference level. Although

it can be seen that this parameter is quite important, it should be noted

that the dependence of miss distance on missile acceleration capability

is not as simple as indicated in the figure. A complication arises in

that a strong interaction exists between target acceleration, noise, and
missile acceleration. The interaction effect will be discussed in a

subsequent section devoted to this problem alone.

Effects of Target Maneuver and Noise

The parameters considered here are the target acceleration normal

to the beam aT, the average switching period of this acceleration T,

and the glint noise spectral density N. The quantitative effect of

these parameters on the minimum miss distance as determined by equation

(6) has been plotted in figures 5 and 6.

From figure 5(a), it can be seen that the average switching period

has a small effect on the miss distance over the range considered. Periods

shorter than those shown would eventually cause the curve to rise sharply,

but this rise is of little significance since such short periods are not

encountered. For the longer periods, the minimum miss distance becomes

smaller and also relatively independent of the period. For example, for

T = lO sec, the contribution to the miss distance due to this term is,

from equation (6), less than one foot. This is also illustrated by the

asymptote shown in the figure.

As for the effects of target acceleration and glint noise, it is

apparent from figures 5(b) and 6 that both parameters are very important

and may cause serious deterioration of the minlmummlss distance. Because

they occur as a product, they will be discussed together in the next

section.

Combined Effects of Target and Missile Acceleration and Noise

In this section will be considered the interaction between the three

factors having the greatest effect on theminimummlss distance: target



16

acceleration, missile acceleration, and the noise magnitude. The quanti-

tative effects of these factors can be obtained from equation (6). To

isolate these effects assume both infinitely fast missile acceleration

response and infinite switching period of the target acceleration. Terms

in equation (6) involving natural frequencies and switching period are

then zero. With these assumptions, then, the miss distance is plotted

in figure 7 as a function of missile acceleration capability for various

values of target acceleration and noise. The curves have been drawn to

include only the valid ranges for the variables. The figure illustrates

the predominant effect which target acceleration has on minimummiss

distance. Also from the lines of constant a_/a T ratio which have been

superimposed on this plot, the importance of maintaining a sufficiently

high aM/a T ratio is apparent. The large aM/a T ratio which is neces-
sary in order to operate on the flatter portions of the curves is not so

stringent a requirement as might appear, since aT refers only to the

component of target acceleration normal to the radar beam. Thus, for

attacks other than tail and head-on approaches, aT will be less than

the actual target acceleration.

Effect of Type of Target M_meuver

It is well known that the design of a system normally depends on the

input to which it is expected to be subjected. For this reason it is

appropriate at this point to discuss briefly two important aspects:

(1) the choice of target maneuver for which the system should be optimized,

and (2) the effect on the miss distance of in_,uts for which the system

was not specifically designed.

The type of target maneuver upon which t(, base the system design can

never be determined with certainty, since the target quite obviously may

maneuver in many different ways. First, it might be assumed that the

target pilot possesses unlimited knowledge ab(.ut the attacking missile

and can therefore always maneuver in the opt_Lummanner to avoid being

hit. Such a concept is possibly somewhat unreasonable because of the

difficulty in obtaining and properly utilizing all the information neces-

sary to execute such a maneuver. A more reas(nable assumption is that

the target pilot knows only that he is being J'ired at and therefore exe-

cutes some evasive maneuver. Although there _re a great many maneuvers

which could be made, one possibility is a step acceleration evasive

maneuver initiated at some arbitrary time during the attack (ref. lO).

Although a missile system can be optimized for such a maneuver, the

resulting system is apt to have quite unusual characteristics. The rea-

son is that the use of such an input inherent]j implies that the target

is not capable of turning again, and this is (_ite different than the

target not being likely to turn again. Another difficulty is that the

use of such a maneuver implies that the target pilot will know when the
missile is launched.
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One of the most useful concepts in system design and the one which

is used in this report is to picture the target evasive maneuver as a

stationary random process in which the target turns at its maximum pos-

sible rate alternately in opposite directions without regard to what the

attacking missile is doing. There are several important virtues and com-

ments to be made concerning this input. First of all 3 a statistical

description of the target maneuver process is generally acknowledged to

be a desirable one, since target motions cannot be described as unique

functions of time. Secondly, it is clear that the maneuver is a severe

one and puts the system to a good test; it is often found that systems

designed according to theories based on either no maneuver or very weak

maneuvers are likely to be in trouble if the target happens to maneuver

more severely. Another consideration not generally realized is that the

stationary process described above is also applicable to certain impor-

tant nonstationary processes. In any real problem it is apparent that

the inputs are distinctly nonstationary. For instance they are nonsta-

tionary because the target motion and noise do not exist for an infinitely

long time into the past. However_ the nonstationary character of the

input is due to the strict mathematical definition. It is clear that

in the practical case it makes little difference to the missile so far

as miss distance is concerned whether a process persists over an infinite

or a finite period so long as the process begins before the end of the

attack by an amount equal to or greater than the missile response time.

(Of course, the process may terminate any time after the attack is over

without affecting the results.) In other words, an infinite period is,

for practical purposes, simply one which is longer than the system

response time. Thus when the system response times are shortj results

obtained by means of the stationary input apply directly to an important

class of nonstationary problems. The results presented herein are in

this category.

Since the systems used in this report have been based on the random

maneuver previously described, it is of considerable interest to examine

the miss-distance performance for other specific target maneuvers which

might be made. It has been pointed out that the random maneuver used

herein is a severe one; as a result other less severe maneuvers would be

expected to result in smaller miss distances. In order to illustrate

this point_ the miss distances against several alternative types of

maneuvers have been determined_ using the transfer functions as optimized

for the random maneuver. Theresults are shown in figure 8. It will be

observed in the first place that for input B (a step acceleration varying

from -lg to +lg) the miss distances are essentially the same as for the

random maneuver. This is as would be expected in view of the discussion

in the previous paragraph; since such a single step maneuver can be

obtained from the random process by extracting a finite interval of the

process, it is equally severe and therefore results in the same miss.

At the opposite extreme where the target fails to maneuver at all_ fig-

ure 8 shows the miss distance to be considerably less since, in this

case, the miss is due to noise alone. Other maneuvers will lie between
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these two extremes. For example the miss dis_auce for input A (a step

acceleration varying from 0 to +lg) is seen to be between the no maneuver

and the random maneuver case. The results shown in figure 8, however,

are not general since they apply to only one operating condition. The

figure is intended only to illustrate that less severe maneuvers than

used in this report will most certainly result in smaller miss distances,
depending on the specific maneuver used.

Applications and Example

The three major uses of equation (6) which are considered in this

report are as follows:

First, equation (6) may be used to evaluate the theoretical minimum

miss distance for any specific case where missile parameters, target

maneuvers, and noise are quantitatively known. For example, for the refer-

ence set of parameters, equation (6) gives a _dss distance of 20.5 feet

(the solution of the exact equations (1) thro_h (4) gives 21.9 feet).

This value establishes the theoretical minimtmL miss distance that could

be achieved for these conditions. This resul_ might then be compared to

the miss distance of any other system to indicate possibilities for

improvement.

Second, the equatlonmay be used in prellminarydesign to evaluate
the relative importance of each of the factorE which influence minimum

miss distance. Such evaluations are useful iz determining those design

changes which would be worthwhile in attainin_ smaller miss distances.

Third, the equation may be used to investigate the effect of parame-

ters which can be expressed as some function ¢f the independent variables

given in the equation. An example of this, wklch will be considered here,
is the study of the effects of altitude and Msch number on miss distance

for a specific missile and target. For this example, a tall chase is
considered.

The target is assumed to maneuver with full acceleration capabilities

in the random manner previously described, where the variation of accel-

eration capability is assumed linear with altitude. Furthermore, the

glint noise, which is independent of Mach number and altitude, is again

represented by a constant spectral density magaitude. The values of the

target maneuver and noise were chosen to represent a medium bomber and
are as follows:

aT _ 3.5 - 2.5 altitude/50,000

N = 15 ftS/radlan/sec

T = 5 sec
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The variation of target acceleration, aT, with altitude is plotted in
figure 9.

The variations of missile characteristics with altitude and Mach
numberwere taken from the acceleration capability and natural frequency
data presented in figure 9. An additional assumption is that the natural
frequency fb = l'4fa over the entire range of altitude and Machnumber;
this is a reasonable assumption for supersonic flight.

With the above information, the effect of altitude and Machnumber
on minimummiss distance maybe readily obtained from equation (6). This
computation wasmadefor several Machnumbersover the altitude range of
10,O00 to 50,000 feet and the resulting curves are given in figure lO.

Although the example is for a specific case, there are several
interesting features of the curves shownin figure lO. First, it can be
seen that the miss distance decreases with increasing altitude. Second,
an increase in Machnumber causes a decrease in miss distance at high
altitudes but has little effect at low altitude. The reason for these
unusual effects is that at the lower altitude the missile's acceleration
capability is fixed by the structural limit of the missile. Since the
target acceleration capability continues to increase at lower altitudes,
the aM/aT ratio is reduced and hence the miss distance is increased.
Increasing Machnumber at the lower altitude also does little to reduce
the miss distance for the samereasons since the missile is operating at,
or near, its structural limit.

CONCLUDINGREMARKS

The primary objective of this study has been the evaluation of the
effects of target and missile characteristics on the minimummiss distance.
Consequently, from the designer's viewpoint the equations developed can
be used in a preliminary fashion for the evaluation of the missile require-
ments to achieve a desired miss distance. However, this study is not
intended to consider the design problem, that is, the determination of
the system transfer functions, since this problem was the subject of
reference 2.

The results of this study are intended to be applicable only to
guidance systems of the beam-rider type. Nevertheless, unpublished studies
indicate that these results maybe applicable to guidance systems of the
homing type. This problem, however, is beyond the scope of the present
report.
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Becausethis study was principally concerned with application to
the short-range missile, limitations were pl_ced on the ratio of missile-
to-target acceleration. Since there are certain problems in which this
ratio becomesquite small (such as might be _ncountered at very high
altitudes or for larger missiles with lower 3tructural limits), it would
therefore appear d_sirable to extend this stldy to include lower ratios.

AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field, Calif., June 26, 1957
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